Glossary ======== .. glossary:: QVA A Quantum Variational Algorithm. For a quantum system with :term:`system size` basis states (i.e. a complex vector of length :term:`system size`), QuOp_MPI simulates QVAs of the form, .. math:: |\theta \rangle=\left( \prod_{i = 1}^{D}\hat{U}(\theta_i) \right) | \Psi_0 \rangle where :math:`| \theta \rangle` is the :term:`final state` of the quantum system, :math:`D` is the :term:`ansatz depth`, :math:`\hat{U}` is the :term:`ansatz unitary`, :math:`\theta = \theta_i` are real :term:`variational parameters` and :math:`|\Psi_0\rangle` is the :term:`initial state` of the quantum system. See :class:`quop_mpi.Ansatz`. system state The quantum system prior to or after the action of the :term:`ansatz unitary` (the :term:`initial state` or :term:`final state`). system size The number of basis states (size) of the simulated quantum system. See :class:`quop_mpi.Ansatz`. initial state The starting :term:`system state`, by default an equal superposition of all states. See :meth:`quop_mpi.Ansatz.set_initial_state`. final state The :term:`system state` after the action of the :term:`ansatz unitary`. See :meth:`quop_mpi.Ansatz.get_final_state`. ansatz unitary The sequence of :term:`unitaries ` that constitute one :term:`ansatz iteration `. See :meth:`quop_mpi.Ansatz.set_unitaries`. unitary A unitary operator parameterised by and arbitrary number of :term:`variational parameters`, .. math:: \hat{U}_i(\phi) = \exp(-\text{i} (\phi_0 \hat{M}(\phi_1,...,\phi_m)) where :math:`\phi = (\phi_0,...,\phi_m)` are a sequential subsection of the :term:`variational parameters` and :math:`\hat{M}` is a matrix :term:`operator`. The :math:`\phi_0` is a :term:`unitary parameter` and :math:`(\phi_1,...,\phi_m)` are :term:`operator parameters `. See :class:`quop_mpi.Unitary` and :mod:`quop_mpi.propagator`. operator The matrix exponent of a :term:`unitary`, parameterised by arbitrary number (none or more) of :term:`variational parameters`. unitary parameter A :term:`variational parameter ` that scales the elements of an :term:`operator` via multiplication. See :class:`quop_mpi.Unitary` and :mod:`quop_mpi.propagator`. operator parameter :term:`Variational parameter ` that parametertise the structure of an :term:`operator`. See :class:`quop_mpi.Unitary` and :mod:`quop_mpi.propagator`. Phase-Shift Unitary A :term:`unitary` with a diagonal :term:`operator`. Typically used to phase-encode the solution :term:`quality values ` of a particular optimisation problem. See :mod:`quop_mpi.propagator.diagonal`. Mixing Unitary A :term:`unitary` whose :term:`operator` has off-diagonal elements. Drives the transfer of probability amplitude between quantum basis states. See, * :mod:`quop_mpi.propagator.sparse` * :mod:`quop_mpi.propagator.circulant` * :mod:`quop_mpi.propagator.composite` * :mod:`quop_mpi.propagator.momentum` ansatz depth The number of repeats (or s) of the :term:`ansatz unitary`. See :meth:`quop_mpi.Ansatz.set_depth`. variational parameters Classically tunable parameters of an :term:`ansatz unitary`. Each :term:`ansatz iteration ` is associated with its own subset of parameters, such that the total number of varitional parameters grows linearly with the :term:`ansatz depth`. observables A real vector of scalar quality values associated with each simulated basis state (lower is better). Defines the diagonal observables operator :math:`\hat{O}`. See :meth:`quop_mpi.Ansatz.set_observables`. objective function The expectation value of the :term:`observables` operator, minimised by the classical :term:`optimiser`. .. math:: \langle \theta | \hat{O} | \theta \rangle :meth:`quop_mpi.Ansatz.objective_function`. free parameters The subset of :term:`variational parameters` to be tuned via classical optimisation of the :term:`objective function`. See :meth:`quop_mpi.Ansatz.set_free_params`. :meth:`quop_mpi.Ansatz.set_free_params`. optimiser The classical optimiser responsible for minimisation of the :term:`objective function` via variation of the :term:`free variational parameters `. :meth:`quop_mpi.Ansatz.set_optimiser`.