QuOp Functions ============== .. glossary:: QuOp Function QuOp Functions define the various aspects of a :term:`QVA` or modify the simulation methods used by the :class:`quop_mpi.Ansatz` class. FunctionDict Prior to :term:`QVA` simulation, positional arguments of a QuOp Function are bound to the attributes of the receiving class if a match is found. Additional positional and keyword are specified via a FunctionDict: .. code-block:: python function_dict : {"args":List[Any], "kwargs":Dict} The ``"args"`` and ``"kwargs"`` elements of a FunctionDict are both optional. If present, these are passed to a bound QuOp Function as: .. code-block:: python bound_quop_function(*function_dict["args"], **function_dict["kwargs"]) Observables Function Returns a 1-D real array containing ``local_i`` elements of the :term:`observables` with global offset ``local_i_offset``. Passed to the :meth:`quop_mpi.Ansatz.set_observables` method and bound to the attributes of the :class:`quop_mpi.Ansatz` class. Predefined Observables Functions are included in the :mod:`quop_mpi.state` module. See :class:`quop_mpi.Ansatz` for a selected list of available attributes. **Typical structure:** .. code-block:: python def observables_function( system_size : int local_i : int, local_i_offset : int, *args, **kwargs) -> np.ndarray[np.complex128]: ... return observables Initial State Function Returns a 1-D complex array containing ``local_i`` elements of the :term:`initial state` with global offset ``local_i_offset``. Passed to the :meth:`quop_mpi.Ansatz.set_initial_state` method and bound to the attributes of the :class:`quop_mpi.Ansatz` class. **Typical structure:** Predefined Initial State Functions are included in the :mod:`quop_mpi.state` module. See :class:`quop_mpi.Ansatz` for a selected list of available attributes. See :class:`quop_mpi.Ansatz` for a selected list of available attributes. .. code-block:: python def initial_state_function( system_size : int local_i : int, local_i_offset : int, *args, **kwargs) -> np.ndarray[np.complex128]: ... return initial_state Free Parameters Function Returns an array of integers that specifies a subset of :term:`free parameters`. Passed to :meth:`quop_mpi.Ansatz.set_free_params`. See :class:`quop_mpi.Ansatz` for a selected list of available attributes, **Typical Structure** .. code-block:: python def free_params_function( ansatz_depth : int, total_params : int, *args, **kwargs ) -> List[int] ... return free_params Sampling Function Returns an :term:`objective function` value computed from batches of :term:`observables` values that are sampled based on the probability distribution of the wavefunction state vector during simulation together with a boolean that specifies wether the :term:`objective function` value should be passed to the :term:`optimiser` or more sample batches taken. Passed to :meth:`quop_mpi.Ansatz.set_sampling`. See :class:`quop_mpi.Ansatz` for a selected list of available attributes, .. note:: The :class:`quop_mpi.Ansatz` class computes the expectation value exactly by default. **Typical Structure** .. code-block:: python def sampling_function( samples : List[ndarray[float64]], *args, **kwargs ) -> (float, bool) ... return objective_function_value, value_accepted The ``samples`` argument is a list of 1-D real arrays containing ``sample_block_size`` :term:`observables` values. If ``value_accepted`` is not ``True``, an additional sample block is appended to ``samples``. Jacobian Function Enables distributed parallel computation of the :term:`objective function` gradient. Returns the partial derivative of the :term:`objective function` with respect to the variational parameter with index ``var``. Used to compute the :term:`objective function` gradient is parallel if using a gradient-informed :term:`optimiser`. Passed to :meth:`quop_mpi.Ansatz.set_parallel_jacobian`. The :class:`quop_mpi.Ansatz` supports numerical approximation of the gradient using the forward and central finite difference methods (specified via :meth:`quop_mpi.Ansatz.set_parallel_jacobian`). See :class:`quop_mpi.Ansatz` for a list of available attributes. .. note:: * The :class:`quop_mpi.Ansatz` class computes the :term:`objective function` gradient sequentially by default. * The default optimisation method of the :class:`quop_mpi.Ansatz` class, the BFGS algorithm, is gradient informed. **Typical Structure** .. code-block:: python def jacobian_function( variational_parameters: np.ndarray[np.float], evaluate: Callable, var: int, *args, **kwargs ) -> float: ... return partial_derivative_value The ``evaluate`` argument is bound to the :meth:`quop_mpi.Ansatz.evaluate` method which implements lazy computation of the :term:`objective function`. This is the recommended method for use in numerical approximation of the gradient by finite-difference methods. Operator Function Returns an :term:`operator` object that is compatible with the propagation method of specific :class:`unitary` class. See :meth:`quop_mpi.Unitary`. Predefined Operator Functions are included with each ``unitary`` class in the :mod:`quop_mpi.propagator` module under ``quop_mpi.propagator..operator``. See :class:`quop_mpi.Unitary` and the predefined ``unitary`` classes in the :mod:`quop_mpi.propagator` module for lists of available attributes. **Typical Structure** .. code-block:: python def operator_function( system_size : int, local_i : int, local_i_offset : int, variational_parameters : ndarray[float], *args, **kwargs ) -> Any: ... return operator Operator Functions with one or more :term:`variational parameters` require the ``variational_parameters`` positional argument. Operator Functions with no :term:`variational parameters` do not. Parameter Function Returns initial values for the :term:`variational parameters` associated with an instance of the :meth:`quop_mpi.Unitary` class. Predefined Parameter Functions are included in the :mod:`quop_mpi.param` module. See :class:`quop_mpi.Unitary` for a list of available attributes. **Typical Structure** .. code-block:: python def param_function( n_params : int, *args, **kwargs ) -> List[float]: ... return variational_parameters